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ABSTRACT

This paper addresses the application of active contours
or snakes for location and tracking of facial features.
Conventional snake approaches find the position of the
snake by finding a minimum of its energy, composed of
internal and external forces. The external forces pull the
contours toward features such as lines and edges.
However, in many applications this minimization leads to
contours that do not represent correctly the feature we
are looking for. We propose in this paper to introduce
some higher level information by a statistical
characterization of the snaxels that should represent the
contour. This higher level information is introduced in
the selection of candidates in a dynamic programming
implementation of the active contours algorithm, as well
as in the external energy. Furthermore, the same
approach is used for tracking the contours using in this
case motion estimation.

1. INTRODUCTION

A lot of attention in the past years has been devoted to
contour detection and tracking by means of snake models.
Snakes were first introduced by Kass et al. [5]. They
proposed energy minimization as a framework where low-
level information (such as image gradient or image
intensity) can be combined with higher-level information
(such as shape, continuity of the contour or user
interactivity). In their original work the energy minimization
problem was solved using a variational technique. In [1]
Amini et al. proposed Dynamic Programming (DP) as a
different solution to the minimization problem.

In [9], we proposed an active contours algorithm based on
DP, for tracking facial features, introducing a new term in
the energy of the snake, and selecting the candidate pixels
for the contour (snaxels) using motion estimation. Now,
this DP approach is extended to be able to automatically
initialise the facial contours. In this case, the candidate
snaxels are selected by a statistical characterization of the
contour based on Principal Component Analysis (PCA),
using what we call eigen-snaxels.
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2.SNAKES

In the discrete formulation of active contour models the
contour is represented as a set of snaxels vi=(x;y) for
i=0,...,N-1, where x; and y; are the x and y coordinates of
the snaxel i, and its energy, which is going to be minimized,
is defined by:

Eone)= 5 (B 0) +E ) 0]

We can use a discrete approximation of the second
derivative to compute E,,,.

Ep = ()| =pa =20 +viy @
This is an approximation to the curvature of the contour at
snaxel i, if the snaxels are equidistant. Minimizing this
energy will produce smooth curves. This is only
appropriate for snaxels that are not corners of the contour.
More appropriated definitions for the Energy will be
proposed in Section 4.2 for the initialisation of the snake
and in Section 5.2 for tracking.

The purpose of the term E,, is to attract the snake to
desired feature points or contours in the image. In this
work we have used the gradient of the image (/(x,))), along
the contour from v;to vu,. Thus, the E.,, at snaxel v; will
depend only on the position of the snaxels v; and v;,;. That
is,

Eexr(vi) = Econfv,—vm =f([) vi’viﬂ) (3)
However, a new term will also be added to the external
energy, in order to be able to track contours that have
stronger edges nearby.

3. DYNAMIC PROGRAMMING

3.1. Energy minimization
We will use the DP approach to minimize the energy in Eq.
(1). Let us express the Energy of the snake remarking the
dependencies of its terms:
N-1 N-l
E W= z E (Vv +E 0, v,) = 2 EVivia) (4)
i=0 =0
Although snakes can be open or closed, the DP approach
can be applied directly only to open snakes. In this case
the limits of Eq. 4 are adjusted to 1 and N-2 respectively.
Now, as described in [1], this energy can be minimized via
discrete DP defining a two-element vector of state
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variables in the ith decision stage: (v, v;). The optimal
value function is a function of two adjacent points on the
contour S;(v;,,,v;), and can be calculated, for every couple
of possible positions for snaxels v;,,and v, as:

S, Wy = mm[S..(v,, V) +E Vi vig)] ©)

So(vl, v0) is 1mt1a]1sed to E,(v0,vl) for every possible
candidate pair (v0,vl) and from this, S;can be computed
iteratively from i=/ up to i=N-2 for every canddate
position for v;. The total energy of the snake will be

E () =min Sy, (vy_, Va_y) ©

Besides, we have to store at every step i a matrix which
stores the position of v;.;that minimizes Eq. (5), that is,

M ,(v,,,v,) = v, such that v, ;minimizes (5).
By backtracking from the final energy of the snake and
using matrix M,, the optimal position for every snaxel can
be found.
In the case of a closed contour the solution proposed in
[2] is to impose the first and last snaxels to be the same,
and fix it to a given candidate for this position. The
application of the DP algorithm will produce the best result
under this restriction. Then this initial and final snaxel is
successively changed to all the possible candidates, and
the one that produces a smaller energy will be selected.
We use an approximation proposed in [3] that requires
only two open contour optimisation steps.

3.2. Selection of candidates

Up to now, we have assumed that for every snaxel v, there
are a finite (and hopefully small) number of candidates, but
we have omitted how to select these candidates. The

computational complexity of each optimisation step is

O(nnt), where n is the number of snaxels and m the number
of candidates for every snaxel. Thus, it is very important to
maintain m low. )

In [1] only a small neighbourhood around the previous
position of the snaxel was considered. However, the

algorithm was iteratively applied starting from the obtained
solution until there was no change in the total energy of
the snake. This method has several disadvantages. First,
like in the approaches which use variational techniques for
the minimization, the snake can fall into a local minimum.
Second, the computational time can be very high if the
initialisation is far from the minimum.

In [2] and [3] a different set of candidates is considered for
every snaxel. In particular, [2] establishes uncertainty lists
for the high curvature points and defines a search space
between these uncertainty lists. In {3] the search zone is
defined with two initial concentric contours. Each contour
point is constrained to lie on a line joining these two initial
contours. This approach gives very good results if the two
concentric contours that contain the expected contour are
available and the contour being tracked is the absolute

minima in this area. However, these concentric contours
are not always available.

In the next sections we will describe how we can select
these candidates for facial feature point detection and
tracking, respectively.

4. FACIAL FEATURE POINT DETECTION

4.1. Selection of candidates

We propose a new method that in a first step needs to fix
the topology of the snakes. In our case, we are using a 16
snaxels equally spaced snake for the mouth and a 8 snaxels
equally spaced snake for the eyebrows. To select the best
candidates for each of these snaxels we compute what we
call the v-eigen-snaxel, by extracting samples of them from
a database. That is, after resizing the faces from our
database to the same size (200x350), we extract for each
snaxel v; the 16x16 area around the snaxel in every image
of the database. The extracted sub-images are used to form
the training set of vectors for the snaxel v, and from them,
the eigenvectors (eigen-snaxels) are computed by classical
PCA techniques.

The first step for initialising the snakes in a new image is to
roughly locate the face. Different techniques can be used
for this aim [6], [10]. After size normalization of the face
area, a large area around the rough position for every
snaxel v; is examined by computing the reconstruction error
with the corresponding v-eigensnaxel. Those pixels
leading to the smaller reconstruction error are considered -
as candidates for the snaxel v,.

4.1.1. Principal Component Analysis (PCA)

The principle of PCA is to characterise a set of very similar
images by a few variables reducing the dimension of the
set [8].

For each snaxel v, the vectors {x} are constructed by
lexicographic ordering of the pixel elements of each sub-
image from the training set. A partial KLT is performed on
these vectors to identify the largest-eigenvalue
eigenvectors.

4.1.2. Distance measure

To evaluate the feasibility for a given pixel to be a given
snaxel we first construct the vector {x'} using the
corresponding sub-image. Then we obtam a mincipal
component feature vector y=tm" x where X =X—X is
the mean-normalized image vector, ¢ is the eigenvector
matrix for snaxel v; and ¢y is a sub-matrix of ¢ that contains
the M principal eigenvectors. The reconstruction error is
calculated as:

=3 = -

i=M+1

U]

Mz

T
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The pixels producing the smaller reconstruction error are
selected as candidate locations for the snaxel v;.

4.2. Snake energy

4.2.1. External energy

A new term is added to the external Energy function in Eq
(3) to take into account the result obtained in the PCA
process. The energy will be lower in those positions where
the reconstruction error is lower.

Etm (vi) = yEconlvH—v; + (1 - Y)e : (vi) (8)

In our experiments the value of y has been set to 0.5.

4.2.2. Internal energy

As mentioned, the Energy (2) is only appropriate for
snaxels that are not corners of the contour. In the case of
corners the energy has to be low when the second
derivative is high. We use, for the energy of the snaxels
belonging to the eyebrows and the mouth:
Eu)={Bya~2 4 H1-BABa -2+ l] O
where f; is set to | if v;is not a corner point and to 0 if it is.
B represents the maximum value that the approximation of
the second derivative can take.

To solve problems of snaxel grouping we also add, as in
[7], another term to the internal energy that forces snaxels
to preserve the distance between them from one frame to
the next one:

+1 t t+1 t
E =1 w" =l |+l g | 10$)

c——
W=V, -V,

A , in the frame t
So when the distance is altered the energy increases

proportionally.
5. FEATURE POINT TRACKING

5.1. Selection of candidates

In the initialisation of the snake, the candidates for every
snaxel were selected on the basis of a statistical
characterization of the texture around them. However, in
the case of tracking, we have a better knowledge of this
texture if we use the previous frame. The solution we
propose to find the candidates for every snaxel in the
tracking process uses motion estimation in order to select
the search space for every snaxel.

A small region around every snaxel is selected as basis for
the motion estimation. The shape of this region is
rectangular and its size is application dependent. However,
the region should be small enough so that its motion can
be approximated by a translational motion. The
compensation error for all the possible displacements
(dx,dy) of the block in a given range is computed as:

J=Ry (=R

MCE,o(dx,dy)= Y, S |1i(ro~isyo= ) =1, (o =i+ dx 3y j + )’

J=~Ryi=-Rx
an
being (x, ¥, the x and y coordinates of the snaxel v; in the
previous frame, which we have called v, The region under
consideration is centred at the snaxel and with size 2Rx in
the horizontal dimension and 2Ry in the vertical dimension.
The range for (dx,dy) determines the maximum
displacement that a snaxel can suffer. The matrix
MCE, ;o(dx,dy) is stored for every snaxel, and the M best
results are selected as possible new locations for snaxel v;.

5.2. Snake energy

5.2.1. External energy

We use for the external energy in the tracking procedure
the same principle than for the initialisation. That is, it will
be composed, as in (8), of two terms. The first one is the
gradient along the contour, but the second one is slightly
different, as in this case we can use the texture provided
by the previous frame instead of the statistical
characterization. Thus, the second term corresponds to the
compensation error obtained in the motion estimation. In
this way preference is given to those positions with the
smaller compensation error. That is, the energy will be
lower in those positions which texture is most similar to the
texture around the position of the corresponding snaxel in
the previous frame. Therefore, the expression for the
external energy will be:

Eex! (vi) = }Econw,_,—v, + (1 - Y)MCEV,O (vi) 12
The constant y can be set depending on the strength of
the contour that is being tracked. If it is a strong contour y
is chosen close to 1. Otherwise, more importance is given
to the Motion Compensation Error term.

5.2.2. Internal energy

The internal energy we use to track feature points has the
same formulation as in paragraph 4.2.2. We assume here
that we know the geometry of the different face features to
correctly set & to 1 or 0, Eq. (9).

The same algorithm can be used to track generic objects,
but in this case we have to modify the way we calculate
the internal energy in order not to have to specify the f;
parameter value. Thus, for a generic object, instead of (9),
we use:

E.()=|C - C" (13
C =

i+ T ﬁi'IZ

U= v,- v,

A ,in the frame t
ﬁ,;l y li,-' are unit vectors. As described in [7], this

internal energy tends to keep the curvature of the snake
between two successive frames.
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6. RESULTS AND CONCLUSIONS

In Figure 1 and 2 we show some examples of automatic
initialisation and tracking. More results will be shown in
our web page by the time of the conference. To perform
the tests, the algorithms have been introduced in a GUI
that allows manual correction of the snaxels position. In
the tests performed, the contours obtained with the
automatic initialisation always correspond to the facial
features, if the face has been located accurately. However,
as shown in Figure 2, sometimes some points should be
manually modified if more accuracy is required. The
tracking has been performed on 136 sequences from the
Cohn-Kanade facial expression database [4]. From these
sequences, 92 needed no manual correction, 24 needed 1, 2
or 3 points correction along the sequence and 20
sequences had one major problem in at least one frame for
one feature tracking.

We have proposed in this paper a criterion for selection of
the candidate snaxels in a dynamic approach
implementation of the active contours algorithm. We also
claim that, in order to initialise or track generic contours,
the external energy needs an additional term related to the
specific texture around the snaxels, in order to avoid the
contour to fall in stronger edges that might be around the
one we are aiming.
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Fig. 1. The first line are examples of automatic initialisation of the

face features, while the second and third lines show tracking results.

Fig. 2. Automatic initialisation examples with minor errors
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